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Classical Chaos

+ Early time: sensitivity of phase-space

trajectories to the initial conditions
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» Very late time:




Classical Chaos vs Quantum Mechanics

In quantum systems, the ‘classical’ coarse-graining Is set
by h

The picture above might not be useful (after Ehrenfest

tlme Scale) UEhrenfest ™ ilog (/ de/h)
2

How the previous discussion should be modified due to

QM

Classical chaos for nonzero A? Quantum chaos?



Quantum Chaos

» Quantize the classical chaotic system: chaotic systems

have characteristic of random
matrices [Review by D’Alessio, Kafri, Polkovikov, Rigol, 1509.06411]
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Quantum Chaos

» Quantize the classical chaotic system: chaotic systems

have characteristic of random
matrices [Review by D’Alessio, Kafri, Polkovikov, Rigol, 1509.06411]
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+ Local chaotic behavior can be generalized
(semi-classical intuition)

aqg;fo) = {q(t), po}rB (|V, Wt]2> ~ et




Expectation value of the commutators

[Larkin, Ovchinnikov, JETP (1969); Shenker, Stanford, 1306.0622; Maldcena, Shenker, Stanford, 1503.01409]
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Out-of-Time-Ordered Correlators (OTOC)

[Larkin, Ovchinnikov, JETP (1969); Shenker, Stanford, 1306.0622; Maldcena, Shenker, Stanford,
1503.01409]

C(t,x) = —=([W(t,x), V(0)]'[W(t,x), V(0)])s
+ Probing
CQ — Cl — C(t, X)

Co = (U1 (1)|P2(t)) + (Wa(t)|Wy(t)) ~» Out-of-time Ordered
Cr = (V1(2)|¥1(2)) + (P2(¢)|¥2(¢)) ~—>» Time ordered

W4 (t)) = VoW,|TFD)
Wy (t)) = WiV TFD)

’ for interacting
guantum systems with many degrees of freedom

Cz =1—- EGAL (t_%) t'r < t < t*

Different (diffusive) spreading might be seen in non-maximally chaotic systems



Holographic duality

Higher-dimensional spacetime

Black hole

Quantum critical electrons Four-dimensional flat spacetime




Holographic OTOC

[Shenker, Stanford, 1306.0622; 1412.6087]

» OTOC
F = (TFD‘V(tl)W(tz)V(tg)W(tgl)‘TFD) = (out\in)

r=90
CFTL \\\ F:uture Inter101‘ /, CFTR
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Holographic OTOC

[Shenker, Stanford, 1306.0622; 1412.6087]

» OTOC
F = (TFD‘V(tl)W(tz)V(tg)W(tgl)‘TFD) = (out\in)

A P “’\fw\/“ ﬂq’m(\ﬁ
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Holographic OTOC

[Shenker, Stanford, 1306.0622; 1412.6087]

» OTOC = amplitudes for of particles dual
to W and V In a black hole geometry dual to the thermal
state 'TFD)
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Holographic OTOC

[Shenker, Stanford, 1306.0622; 1412.6087]

+» OTOC = amplitudes for of particles dual
to W and V in a black hole geometry dual to the thermal

state 'TFD)

+ In elastic eikonal gravity approximation, the dominate
contribution Is related to the on
the horizon of a two-sided black hole

ds?, .. = d5°+hy,du’4h,,dv’

OTOC = /KvaKvKW X €i6(s’b)

os,b) = % /dd+1m V=9 (huu T + heyt T°Y) < Gnsf(b) ~ GNQQFW (t_%)
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Holographic OTOC

[Shenker, Stanford, 1306.0622; 1412.6087]

» OTOC = amplitudes for of particles dual
to W and V In a black hole geometry dual to the thermal
state 'TFD)

» In elastic elkonal gravity approximation, the dominate
contribution Is related to the on
the horizon of a two-sided black hole

. Universal Lyapunov exponent A = 271

+ The butterfly velocity depends on the details of the black
hole geometry



C h aOS bO U n d [Maldacena, Shenker, Stanford, 1503.01409]

» Related regulated function
—BH

A

€

F(t) = Te(yV(0)yW ()yV (0)yW (1)) ~ 1 — ee?rt, o =

+ For systems with large hierarchy between thermalization and
scrambling, analyticity in correlation functions demands

A, < 27T
+ It holds for very generic guantum many-body systems
+ Black holes saturate this bound: maximal chaos

» SYK/AAS2 [Kitaev, 2015]



Chaos from hydrodynamics via pole skipping

[Grozdanov, Schalm, Scopelliti, 1710.00921; Blake, Lee, Liu, 1801.00010; Blake, Davison, Grozdanov, Liu,
1809.01169; ...]

» Nalvely hydrodynamics has nothing to do with chaos

» Deep connection from EFT: Signatures of chaos in energy
density two point function of GEoo 00 (w, k)

+ There exists a special point (w., k) = (iAr, ?—L)
B
. B(w, k .
N GR(‘*’: k) = AE:, k§ W|th A(w*, k*) — B(UJ*, k*) =0

» Examples of pole skipping in many maximally chaotic
systems: SYK, AdS black holes in Einstein gravity plus matter

» Pole skipping also exists for 2-pt correlators of other
operators on the lower half plane



Chaos from hydrodynamics via pole skipping

[Grozdanov, Schalm, Scopelliti, 1710.00921; Blake, Lee, Liu, 1801.00010; Blake, Davison, Grozdanov, Liu,
1809.01169 ;...]

» Nalvely hydrodynamics has nothing to do with chaos

» Deep connection from EFT: Signatures of chaos in energy
density two point function of GEoo 00 (w, k)

» There exists a special point| (w., k) = (iAL, 7’3—1’)
B
. B(w, k .
N GR(wa k’) — AE::}, k§ Wlth A(w*; k*) — B(UJ*; k*) =0

» Examples of pole skipping in many maximally chaotic
systems: SYK, AdS black holes in Einstein gravity plus matter

» Pole skipping also exists for 2-pt correlators of other
operators on the lower half plane



Motivation

» Connection between OTOC and pole skipping, e.g. for

» What Is the role of rotation in holographic chaos

» What Is the role of massive graviton in holographic chaos



Why 3D gravity
+» A "simple” toy model to understand quantum gravity
» We can learn much from CFT calculations
+ In the following, we will talk about
- Quantum chaos in 3D Einstein gravity

- Quantum chaos in 3D TMG



3D Einstein gravity

+ EInstein-Hilbert action

1

= | #Bzy=g(R-2A
SEH 167G |, x g (R )

+ BTZ Black hole solution

2
ds? = — f(r)dt? + ]ﬁ% + 72 (dgo — T;r";‘ dt) ,
2 L, 2\(.2 .2
PR TS

» M, T, Q are determined by r ,r_.
» The dual theory is expected to be a CFT with 8+ =38(1¥¢Q) and

_. 3
R Te.
» The angular direction Is periodic. At high temperature % — 0,

we can take (a boosted brane)



Chaos parameters from OTOC

[Jahnke, Kim, Yoon, 1903.09086; Stikonas 2018; Poojary 2018]

+ From shock wave calculations

OTOC(t, p12) ~ 1+ ee%ﬂth(ﬂt — )~ 1+ Cleé—i(ﬂr&mz) n Czegz—f(t—fwz)

+ Nalvely we have

27

M= s F a0 ve = Fl
» The chaos bound is violated: »_ < %“ <A
+ However, the angular coordinate Is , 1.e. the profile

of shock wave Is periodic, therefore the two coefficients
C1 and C:2 are not independent [Mezei, Sarosi, 1908.03574]

OTOC(t, p12) = 1+ e[em+ T) 4 gep=m10r2)



Instantaneous Lyapunov exponent

[Mezeli, Sarosi, 1908.03574]

OTOC(t, @12) ~ 1 + e[+ “T12) 4 gred” (t-be12)]

+ instantaneous Lyapunov exponent

OTOC(¢,0) ~ 1 4 eelinst-t

0.5 /8 — 07 ) o0

5 10 15 20 25 30 35

+ In the high temperature limit, the instantaneous Lyapunov exponents
behave as step function.

+ The average of instantaneous Lyapunov exponents is %ﬁ



Pole skipping in holography

+ From EOM near the horizong, -
Expand hap = e~ WOTke ()7 Z ﬁg;) (r—ry )"

n=0

near horizon,

(2miw + 4miQk — K2B(1 — Q%)) AY) = —(2mi — Bw)(1 — Q) [2’6’3533 t wﬁgfqz] -

211 271 -
Al (w.k) = (ﬁ(lm), iﬁ(l$§2)) both solutions are regular

27
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Pole skipping in holography

+  From EOM near the horizon E,, =0
Expand hg, = e 4 — 1 )”Zh(”)(r—m
near horizon,

(2miw + 4miQk — K2B(1 — Q%)) AY) = —(2mi — Bw)(1 — Q) [2’671533 t wﬁffqz] -

211 271 -
Al (w.k) = (6(1$Q)’ iﬁ(1¢ﬂ)) both solutions are regular

2T e
BT Q) V=T

AL =

» Correlators of energy density from holography

0%Sren. k(4 +K?)
ShO 5750 T 2(w + k2)

The pole skipping point is

(T (we, K)T"" (—wEg, —k)) «

271 271
(. k) = (6(1 =0y T80 :Fm)



Pole skipping In CFT

+ For CFT on cylinder

() (et o 2]

_ (B_R) (w+k ﬂé(k;w))sinh[ﬁ%]F@nL&k) .

+ﬂ'5

: 2711 271
> From the first term (w.k) = (i B1-Q) ~ B0 _sz)>
271 271
»  From the second term (w;k) = (iB(HQ)a T 6(1“2))

[see also Haehl, Rozali, 1808.02898]

+ Pole skipping is a generic feature of any CFT, including
chaotic CFTs and non-chaotic CFTs.



Topologically Massive Gravity (TMG)

i

&

A gravitational Chern-Simons deformation to Einstein gravity [Deser, Jackiw,
Templeton, 1988]

1
167G

1 2
S = /d3$\/ —g (R + 2+ ﬂsabcl“dae (abrecd + gFebede))

Any solution of Einstein gravity is a solution of TMG
Thermodynamics for rotating BTZ black holes [Krause, Larsen, hep-th/0508218]
M(u)=M+£, J(u)=J+M
p p

The angular direction and

The dual field theory for TMG on rotating BTZ is a CFT with 8. = B(1 F 4Q)

3¢ 1 1
AN (epem) = 55 (1= 1+ )

When < 1 negative central charge; Black hole instability [Park, hep-th/0608165]

Chiral point =1 [Li, Song, Strominger, 0801.4566]



Chaos in TMG from OTOC

+ Profile for shock wave and OTOC (u # 1 )

__27p 2o 2W(Q—p,2)q_’)
h(¢) =c1 e BOFY 4 cg eBU-D 4 cg e 8107

OTOC(t,p) =1—c¢ e%ﬂth(ﬂt — )

» Nalvely, we have Lyapunov exponents (non-maximal
chaos?)
Mo — 27 )\m_27r(1—,uﬂ) vy = +1, Um:l—,uﬂ

BAFQ)’ - -2 Q—p

+ Periodicity In ¢ : h(¢) — h(¢ mod 27) there Is a constraint
equation among c;

h(p) = ! +’li § = 32_ o oat=ay _ 422(9— ) 62g((19—_g“z))¢
1 — e AU+ efl-o — 1 1—e sG-a?)
+ Thereis iIndependent “instantaneous Lyapunov exponent”

)\inst.(t)— B =+ h(ﬂt)



High T limit of instantaneous Lyapunov exponents

> When /J,>1

W [ae it e fo, 5
inst. — )\+7 if t e [W(lgﬂ), 2%)
2
(Ninst.) = Fﬂ

> When p<1

A,  if te [0, 22D o
) < 7 Ainst. = { ) | 2; 151(§12+u) a Minst.) = —
)\_|_ , if ¢ c [W, Zﬁ) /8
A if ¢ [0, 2R o
— ’ P Q(1-p) . _ =
v < Q )\inst. — { . 27 (Q— - <)‘1nst-) -
dm, if te [FHES, &) 8



Lyapunov exponent and butterfly velocities from OTOC

» In the high temperature limit and |t — ¢| < 1
When u >1

When <1
—(1 — p) ert=9) if Ot <y
Q<p g(t,p) =1—cyw
() —2 e)\m(t_%), if Qt > o
9 M (=35) if Ot <o
t,p)=1—c¢ ’
p < 9(t, ) VW{(1+#) A (te) Q> o

» The dual system Is a non-maximally chaotic system



Chaos in TMG from OTOC

+ When p =1, the profile of the shock wave Is
ng) = ( L+2r4¢ Arry e PO ) arg 1 1 2

= — 3 - eB(1+2) 5 e Bs(1-2)
4’)“_|_ 1 — e_m (em — ]_)2 T+ 86(177_9) —1
+ OTOC
(t, ) =1 gz e, i<y
g(t,p) =1—cyw " .
% er-(tte) if Qt>




Chaos in TMG from OTOC

+ When pu =1, the profile of the shock wave Is

[ 472 ]
h(g) = H# ( 1+2r ¢ n Ay e BUFD) )eﬁﬂﬁrg) N 1 1 LR

4T‘|‘ 1—6_6(411#4-29) (eﬁ(%l#fﬂ) —]_)2 T+ 36(+—29) —1
+ OTOC
# L (t— :
gy =1—eyw | ¥E 00 M0y
| 2 e i Ot >
T+

» The system duals to rotating BTZ black hole in TMG is non-
maximally chaotic

» MSS chaos bound Is always saturated

+ If we Impose the velocity bound on the butterfly velocity,
onlyu > 1 Is allowed



Pole skipping from holography

+ Pole skipping from near horizon EOM

0) 2. (0 0) 7 (0 (0)4 (0) (0)4 (0) (0) 4 (0) 1) (1 (1), (1) _
el p0) 4 ¢(0)p( )+ev¢hv¢ + e hms —|—e¢¢h¢¢ + e p( )—I—e,vthw5 =0

vv "Yvv vr "Yor ro vv "Yvv

27 271 2mi(1 — Qu)  2iw (2 — p)
(B(lﬂl) T ﬁ(lﬂl)) ¢ ( pL—-02) © B(1-Q2) )



Pole skipping from holography

+ Pole skipping from near horizon EOM

0) 2. (0 0) 7 (0 (0)4 (0) (0)4 (0) (0) 4 (0) 1) (1 (1), (1) _
el p0) 4 ¢(0)p( )+ev¢hv¢ + e hms —|—e¢¢h¢¢ + e p( )-|-6,U¢h,u¢ =0

vv "Yvv vr "Yor ro vv "Yvv

27 271 2mi(1 — Qu)  2iw (2 — p)
(5(1¢Q) T 6(14[9)) ¢ ( pL—-02) © B(1-Q2) )

+ Pole skipping from holographic massive mode

hij (p) = e TR B + ph(}) + KD + p~2 (b + pb(j) + o3 + )

+ p5+1 (cf;?) + pcg-) + pzcgjz-) + - )] (Im w, Im k)
3.0
nw=25+1
2.5
- e e e e e e e e e |
(0) Imw = —Imk + 4(1 + 9) .1 .
00,00 C e
G% t (w, k}) X E—t()) e ’ . 1.0
b, Imw = Imk — 49 ’ .

. L
-0.5 -04 -0.3 -0.2 -0.1 0.1

0.2



Pole skipping from CFT

+ The massive graviton is dual to an operator with conformal
dimension (24 6,6)

+ The retarded Green’s function

.| iBr fw—Fk\] . | iBL (w+Ek
GR(w,k)ocsm_5+27T( 5 )181n_2+5+2ﬂ( 5 )]x

iBr (w—FE\\| iBr (w+k
xr(H%( : )) F(HH%( . ))

2

+ Pole-skipping point

2wi(1 — Qu)  2im(Q — p)




Conclusion

+ OTOC and pole-skipping (from near horizon dynamics,
holographic correlators, CFT calculations) are two features
of quantum chaos

+ For rotating BTZ in 3D Einstein gravity, we find a match
between the two methods In the high temperature limit

» Forrotating BTZ in 3D TMG, we only find a “partial” match
between these two methods in the high temperature limit

» For non maximally chaotic system, OTOC and pole-skipping
seems to be two independent approaches



Conclusion

+ OTOC and pole-skipping (from near horizon dynamics,
holographic correlators, CFT calculations) are two features
of quantum chaos

+ For rotating BTZ in 3D Einstein gravity, we find a match
between the two methods In the high temperature limit

» Forrotating BTZ in 3D TMG, we only find a “partial” match
between these two methods in the high temperature limit

» For non maximally chaotic system, OTOC and pole-skipping
seems to be two independent approaches

[Chol et al. 2010.08558]



Recent developments...

+ pole-skipping is a generic phenomenon, for lots of
correlators

» Pole collision” can be used to define the equilibrium time
scale, equilibrium length scale

» Hydrodynamical origin of chaos? Generic features of
maximally chaotic systems? Perspectives of hydro EFT of
chaos

» Non-maximally chaotic systems



Thank you!



