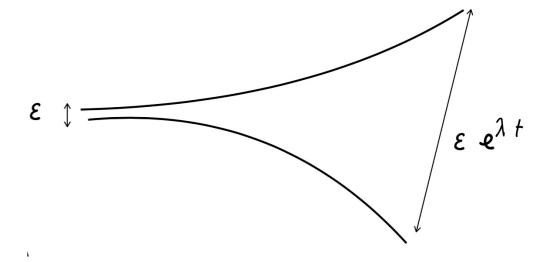
# Quantum chaos in topologically massive gravity

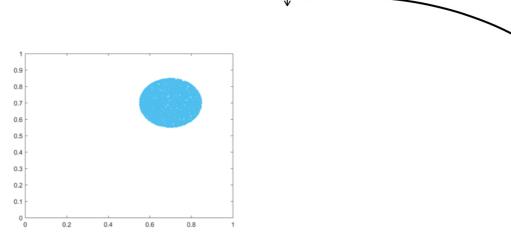
刘焱


2021-04-30

based on: 2005.08508 (with Avinash Raju)



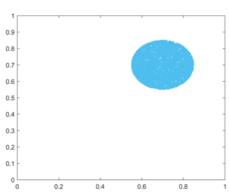
#### Classical Chaos


Early time: exponential sensitivity of phase-space trajectories to the initial conditions

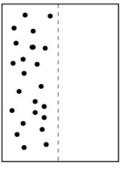


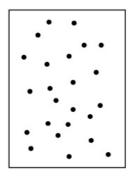
#### Classical Chaos

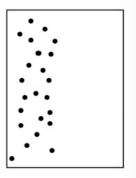
Early time: exponential sensitivity of phase-space trajectories to the initial conditions

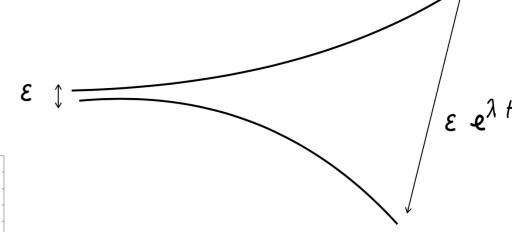

Long time: mixing




#### Classical Chaos


Early time: exponential sensitivity of phase-space trajectories to the initial conditions


Long time: mixing

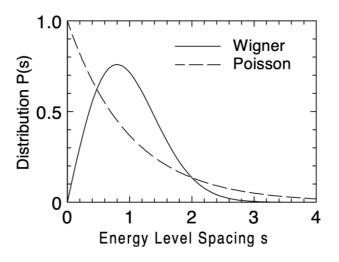



Very late time: Poincare recurrences



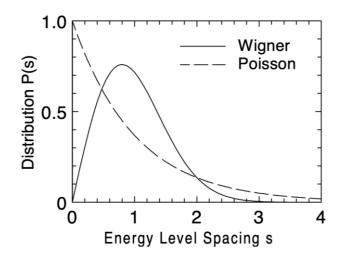







#### Classical Chaos vs Quantum Mechanics

- In quantum systems, the 'classical' coarse-graining is set by  $\hbar$
- The picture above might not be useful (after Ehrenfest time scale)  $t_{\rm Ehrenfest} \sim \frac{1}{\lambda} \log \left( \int_{\Sigma} p dq/\hbar \right)$
- How the previous discussion should be modified due to QM
- $\bullet$  Classical chaos for nonzero  $\hbar$ ? Quantum chaos?


#### Quantum Chaos

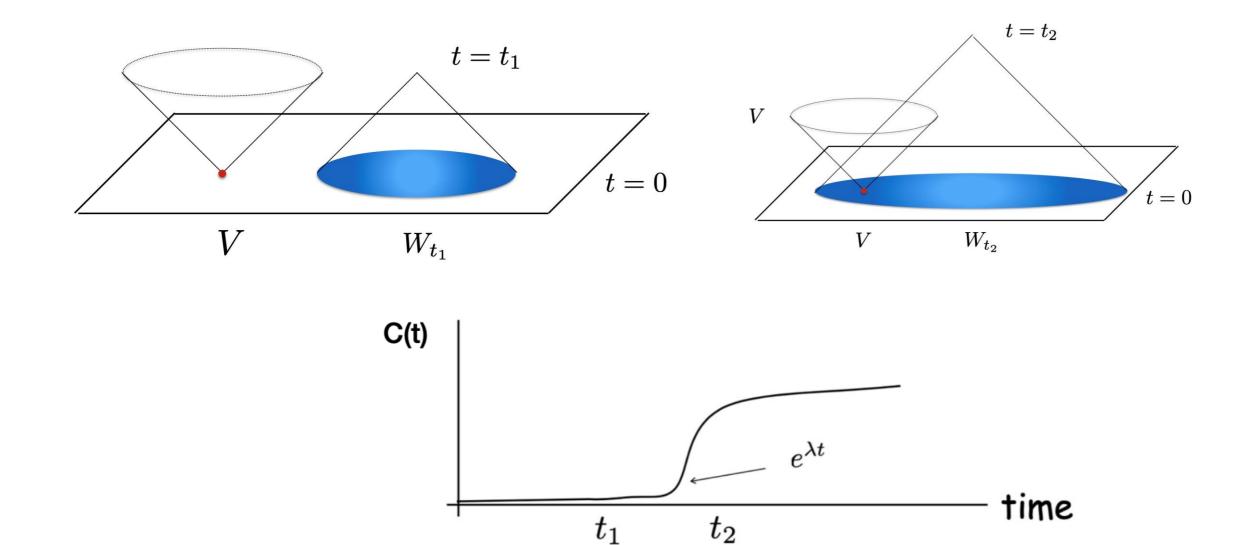
Quantize the classical chaotic system: chaotic systems have statistical level repulsion characteristic of random matrices [Review by D'Alessio, Kafri, Polkovikov, Rigol, 1509.06411]



#### Quantum Chaos

Quantize the classical chaotic system: chaotic systems have statistical level repulsion characteristic of random matrices [Review by D'Alessio, Kafri, Polkovikov, Rigol, 1509.06411]




 Local chaotic behavior can be generalized on the short time scale (semi-classical intuition)

$$\frac{\partial q(t, p_0)}{\partial p_0} = \{q(t), p_0\}_{PB} \qquad \langle [V, W_t]^2 \rangle \sim e^{\lambda t}$$

#### Expectation value of the commutators

[Larkin, Ovchinnikov, JETP (1969); Shenker, Stanford, 1306.0622; Maldcena, Shenker, Stanford, 1503.01409]

$$C(t, \mathbf{x}) = -\langle [W(t, \mathbf{x}), V(0)]^{\dagger} [W(t, \mathbf{x}), V(0)] \rangle_{\beta}$$



#### Out-of-Time-Ordered Correlators (OTOC)

[Larkin, Ovchinnikov, JETP (1969); Shenker, Stanford, 1306.0622; Maldcena, Shenker, Stanford, 1503.01409]

$$C(t, \mathbf{x}) = -\langle [W(t, \mathbf{x}), V(0)]^{\dagger} [W(t, \mathbf{x}), V(0)] \rangle_{\beta}$$

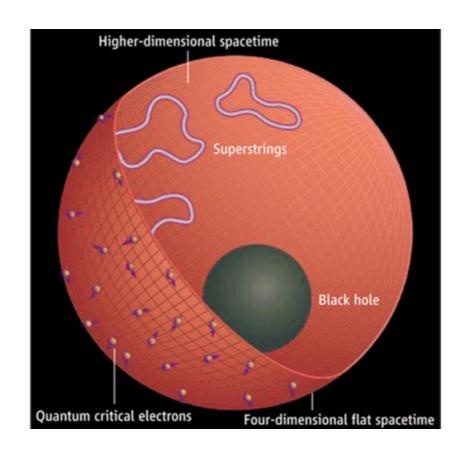
Probing the sensitivity of a system to the initial conditions

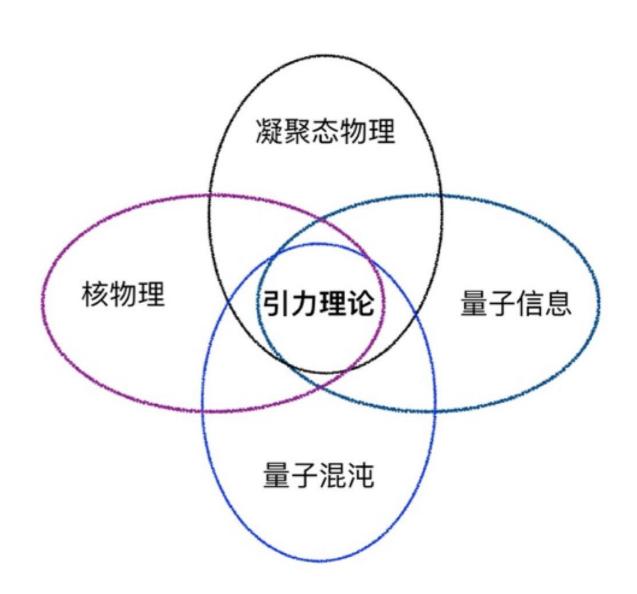
$$C_2 = C_1 - C(t, \mathbf{x})$$

$$C_2 = \langle \Psi_1(t) | \Psi_2(t) \rangle + \langle \Psi_2(t) | \Psi_1(t) \rangle \longrightarrow \text{Out-of-time Ordered}$$

$$C_1 = \langle \Psi_1(t) | \Psi_1(t) \rangle + \langle \Psi_2(t) | \Psi_2(t) \rangle \longrightarrow \text{Time ordered}$$

$$|\Psi_1(t)\rangle = V_0 W_t | \text{TFD}\rangle$$

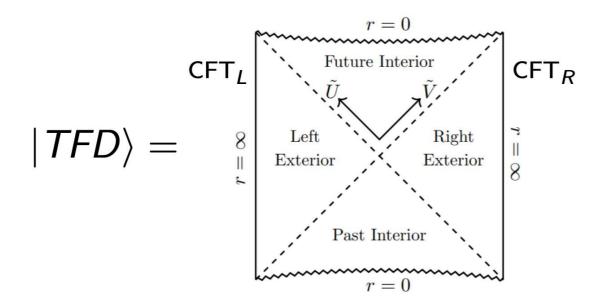

$$|\Psi_2(t)\rangle = W_t V_0 | \text{TFD}\rangle$$


Lyapunov exponents, butterfly velocities: for interacting quantum systems with many degrees of freedom

$$C_2 = 1 - \epsilon e^{\lambda_L \left(t - \frac{x}{v_B}\right)} \qquad t_r \ll t \ll t_*$$

Different (diffusive) spreading might be seen in non-maximally chaotic systems

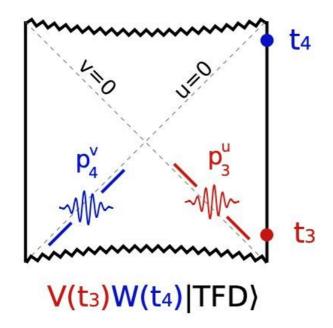
### Holographic duality

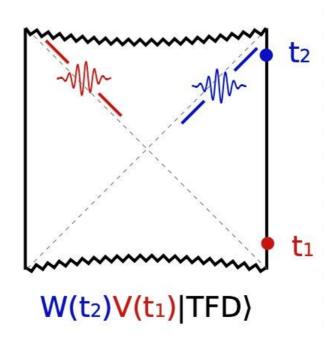





[Shenker, Stanford, 1306.0622; 1412.6087]

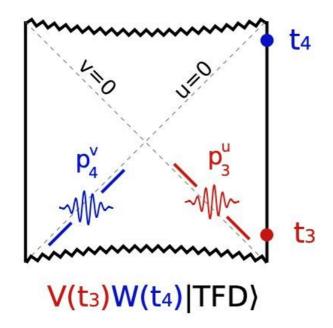
OTOC

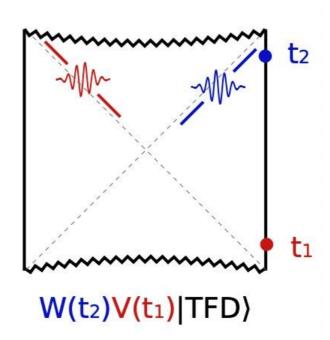

$$F = \langle TFD|V(t_1)W(t_2)V(t_3)W(t_4)|TFD\rangle = \langle out|in\rangle$$




[Shenker, Stanford, 1306.0622; 1412.6087]

#### OTOC


$$F = \langle TFD|V(t_1)W(t_2)V(t_3)W(t_4)|TFD\rangle = \langle out|in\rangle$$






[Shenker, Stanford, 1306.0622; 1412.6087]

• OTOC = amplitudes for 2-to-2 scatterings of particles dual to W and V in a black hole geometry dual to the thermal state  $|{
m TFD}\rangle$ 





[Shenker, Stanford, 1306.0622; 1412.6087]

- OTOC = amplitudes for 2-to-2 scatterings of particles dual to W and V in a black hole geometry dual to the thermal state  $|{
  m TFD}\rangle$
- In elastic eikonal gravity approximation, the dominate contribution is related to the gravitational shock waves on the horizon of a two-sided black hole

$$ds_{shock}^2 = d\bar{s}^2 + h_{uu}du^2 + h_{vv}dv^2$$
 
$$OTOC = \int K_V K_W K_V K_W \times e^{i\delta(s,b)}$$
 (Bulk 4-pt function under approximation)

$$\delta(s,b) = \frac{1}{4} \int d^{d+1}x \sqrt{-g} \left( h_{uu} T^{uu} + h_{vv} T^{vv} \right) \propto G_N s f(b) \sim G_N e^{\frac{2\pi}{\beta} \left( t - \frac{b}{v_B} \right)}$$

[Shenker, Stanford, 1306.0622; 1412.6087]

- OTOC = amplitudes for 2-to-2 scatterings of particles dual to W and V in a black hole geometry dual to the thermal state  $|{
  m TFD}\rangle$
- In elastic eikonal gravity approximation, the dominate contribution is related to the gravitational shock waves on the horizon of a two-sided black hole
- $_{*}$  Universal Lyapunov exponent  $\,\lambda_L=2\pi T\,$

[Shenker, Stanford, 1306.0622; 1412.6087]

- OTOC = amplitudes for 2-to-2 scatterings of particles dual to W and V in a black hole geometry dual to the thermal state  $|{
  m TFD}\rangle$
- In elastic eikonal gravity approximation, the dominate contribution is related to the gravitational shock waves on the horizon of a two-sided black hole
- $_{*}$  Universal Lyapunov exponent  $\,\lambda_L=2\pi T$
- The butterfly velocity depends on the details of the black hole geometry

### Chaos bound [Maldacena, Shenker, Stanford, 1503.01409]

Related regulated function

$$F(t) = \text{Tr}(yV(0)yW(t)yV(0)yW(t)) \sim 1 - \epsilon e^{\lambda_L t}, \quad y^4 = \frac{e^{-\beta H}}{Z}$$

For systems with large hierarchy between thermalization and scrambling, analyticity in correlation functions demands

$$\lambda_L \leq 2\pi T$$

- It holds for very generic quantum many-body systems
- Black holes saturate this bound: maximal chaos
- SYK/AdS<sub>2</sub> [Kitaev, 2015]

#### Chaos from hydrodynamics via pole skipping

[Grozdanov, Schalm, Scopelliti, 1710.00921; Blake, Lee, Liu, 1801.00010; Blake, Davison, Grozdanov, Liu, 1809.01169; ...]

- Naively hydrodynamics has nothing to do with chaos
- Deep connection from EFT: Signatures of chaos in energy density two point function of  $G_{T^{00}T^{00}}^{R}(\omega,k)$
- There exists a special point  $(\omega_*,k_*)=\left(i\lambda_L,rac{i\lambda_L}{v_B}
  ight)$

in 
$$G^R(\omega, k) = \frac{B(\omega, k)}{A(\omega, k)}$$
 with  $A(\omega_*, k_*) = B(\omega_*, k_*) = 0$ 

- Examples of pole skipping in many maximally chaotic systems: SYK, AdS black holes in Einstein gravity plus matter
- Pole skipping also exists for 2-pt correlators of other operators on the lower half plane

#### Chaos from hydrodynamics via pole skipping

[Grozdanov, Schalm, Scopelliti, 1710.00921; Blake, Lee, Liu, 1801.00010; Blake, Davison, Grozdanov, Liu, 1809.01169;...]

- Naively hydrodynamics has nothing to do with chaos
- Deep connection from EFT: Signatures of chaos in energy density two point function of  $G_{T^{00}T^{00}}^{R}(\omega,k)$
- There exists a special point  $(\omega_*, k_*) = (i\lambda_L, \frac{i\lambda_L}{v_B})$

in 
$$G^R(\omega,k) = \frac{B(\omega,k)}{A(\omega,k)}$$
 with  $A(\omega_*,k_*) = B(\omega_*,k_*) = 0$ 

- Examples of pole skipping in many maximally chaotic systems: SYK, AdS black holes in Einstein gravity plus matter
- Pole skipping also exists for 2-pt correlators of other operators on the lower half plane

### Motivation

- Connection between OTOC and pole skipping, e.g. for systems with multiple Lyapunov exponents or nonmaximally chaotic systems
- What is the role of rotation in holographic chaos
- What is the role of massive graviton in holographic chaos

### Why 3D gravity

- A "simple" toy model to understand quantum gravity
- We can learn much from CFT calculations
- In the following, we will talk about
  - Quantum chaos in 3D Einstein gravity
  - Quantum chaos in 3D TMG

### 3D Einstein gravity

Einstein-Hilbert action

$$S_{\rm EH} = \frac{1}{16\pi G} \int_{\mathcal{M}} d^3x \, \sqrt{-g} \left( R - 2\Lambda \right)$$

BTZ Black hole solution

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2} \left( d\varphi - \frac{r_{+}r_{-}}{\ell r^{2}} dt \right)^{2},$$
 
$$f(r) = \frac{(r^{2} - r_{+}^{2})(r^{2} - r_{-}^{2})}{\ell^{2}r^{2}}.$$

- M, T,  $\Omega$  are determined by  $r_+, r_-$ .
- The dual theory is expected to be a CFT with  $\beta_{\pm}=\beta(1\mp\ell\Omega)$  and  $c_{+}=c_{-}=\frac{3\ell}{2C}$
- The angular direction is periodic. At high temperature  $\frac{\beta}{\ell} \to 0$ , we can take a ''decompactification" limit (a boosted brane)

### Chaos parameters from OTOC

[Jahnke, Kim, Yoon, 1903.09086; Stikonas 2018; Poojary 2018]

From shock wave calculations

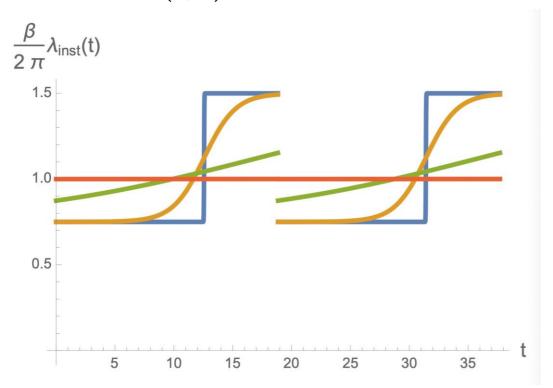
$$OTOC(t, \varphi_{12}) \simeq 1 + \epsilon e^{\frac{2\pi}{\beta}t} h(\Omega t - \varphi) \simeq 1 + C_1 e^{\frac{2\pi}{\beta_+}(t + \ell \varphi_{12})} + C_2 e^{\frac{2\pi}{\beta_-}(t - \ell \varphi_{12})}$$

Naively we have

$$\lambda_{\pm} = \frac{2\pi}{\beta(1 \mp \Omega\ell)} \qquad v_{\pm} = \mp 1$$

- The chaos bound is violated:  $\lambda_- < \frac{2\pi}{\beta} < \lambda_+$
- However, the angular coordinate is periodic, i.e. the profile of shock wave is periodic, therefore the two coefficients C1 and C2 are not independent [Mezei, Sarosi, 1908.03574]

$$OTOC(t, \varphi_{12}) \simeq 1 + \epsilon \left[ e^{\frac{2\pi}{\beta_+}(t + \ell \varphi_{12})} + \# e^{\frac{2\pi}{\beta_-}(t - \ell \varphi_{12})} \right]$$


#### Instantaneous Lyapunov exponent

[Mezei, Sarosi, 1908.03574]

$$OTOC(t, \varphi_{12}) \simeq 1 + \epsilon \left[ e^{\frac{2\pi}{\beta_+}(t + \ell \varphi_{12})} + \# e^{\frac{2\pi}{\beta_-}(t - \ell \varphi_{12})} \right]$$

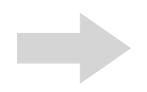
instantaneous Lyapunov exponent

$$OTOC(t,0) \simeq 1 + \epsilon e^{\lambda_{inst.}t}$$



$$\beta = 0, 2\pi, 16\pi, \infty$$

- In the high temperature limit, the instantaneous Lyapunov exponents behave as step function.
- $_{*}$  The average of instantaneous Lyapunov exponents is  $\frac{2\pi}{\beta}$


### Pole skipping in holography

From EOM near the horizon  $E_{nn}=0$ 

Expand 
$$h_{ab}=e^{-i\omega v+ik\phi}(r-r_+)^{\gamma}\sum_{n=0}^{\infty}\tilde{h}_{ab}^{(n)}(r-r_+)^n$$
 near horizon,

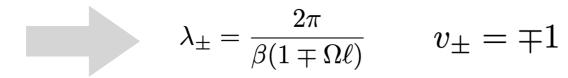
$$\left( 2\pi i \omega + 4\pi i \Omega k - k^2 \beta (1 - \Omega^2) \right) \tilde{h}_{vv}^{(0)} = -(2\pi i - \beta \omega) (1 - \Omega^2) \left[ 2k \tilde{h}_{v\phi}^{(0)} + \omega \tilde{h}_{\phi\phi}^{(0)} \right].$$

At 
$$(\omega, k) = \left(\frac{2\pi i}{\beta(1 \mp \Omega)}, \pm \frac{2\pi i}{\beta(1 \mp \Omega)}\right)$$
 both solutions are regular



$$\lambda_{\pm} = \frac{2\pi}{\beta(1 \mp \Omega\ell)} \qquad v_{\pm} = \mp 1$$

$$v_{\pm} = \mp 1$$


### Pole skipping in holography

From EOM near the horizon  $E_{vv}=0$ 

Expand 
$$h_{ab}=e^{-i\omega v+ik\phi}(r-r_+)^{\gamma}\sum_{n=0}^{\infty}\tilde{h}_{ab}^{(n)}(r-r_+)^n$$
 near horizon,

$$(2\pi i\omega + 4\pi i\Omega k - k^2\beta(1-\Omega^2))\tilde{h}_{vv}^{(0)} = -(2\pi i - \beta\omega)(1-\Omega^2) \left[2k\tilde{h}_{v\phi}^{(0)} + \omega\tilde{h}_{\phi\phi}^{(0)}\right].$$

At 
$$(\omega, k) = \left(\frac{2\pi i}{\beta(1 \mp \Omega)}, \pm \frac{2\pi i}{\beta(1 \mp \Omega)}\right)$$
 both solutions are regular



Correlators of energy density from holography

$$\langle T^{\tau\tau}(\omega_E, k) T^{\tau\tau}(-\omega_E, -k) \rangle \propto \frac{\delta^2 S_{\text{ren.}}}{\delta \tilde{h}_{\tau\tau}^{(0)} \delta \tilde{h}_{\tau\tau}^{*(0)}} = \frac{k^2 (4 + k^2)}{2(\omega_E^2 + k^2)}$$

The pole skipping point is

$$(\omega, k) = \left(\frac{2\pi i}{\beta(1 \mp \Omega)}, \pm \frac{2\pi i}{\beta(1 \mp \Omega)}\right)$$

### Pole skipping in CFT

For CFT on cylinder

$$G_R(\omega, k) = \frac{c_L}{6} \left(\frac{2\pi}{\beta_L}\right)^3 \left(\frac{2i}{\omega - k} + \pi\delta\left(\frac{k - \omega}{2}\right)\right) \sinh\left[\frac{\beta_L k}{2}\right] \left|\Gamma\left(2 + \frac{i\beta_L}{2\pi}k\right)\right|^2 - \frac{c_R}{6} \left(\frac{2\pi}{\beta_R}\right)^3 \left(\frac{2i}{\omega + k} + \pi\delta\left(\frac{k + \omega}{2}\right)\right) \sinh\left[\frac{\beta_R k}{2}\right] \left|\Gamma\left(2 + \frac{i\beta_R}{2\pi}k\right)\right|^2.$$

- From the first term  $(\omega,k)=\left(\pm \frac{2\pi i}{\beta(1-\Omega)},\ \pm \frac{2\pi i}{\beta(1-\Omega)}\right)$
- From the second term  $(\omega,k)=\left(\pm rac{2\pi i}{\beta(1+\Omega)}, \ \mp rac{2\pi i}{\beta(1+\Omega)}
  ight)$

[see also Haehl, Rozali, 1808.02898]

Pole skipping is a generic feature of any CFT, including chaotic CFTs and non-chaotic CFTs.

### Topologically Massive Gravity (TMG)

A gravitational Chern-Simons deformation to Einstein gravity [Deser, Jackiw, Templeton, 1988]

$$S = \frac{1}{16\pi G} \int d^3x \sqrt{-g} \left( R + 2 + \frac{1}{2\mu} \varepsilon^{abc} \Gamma^d_{ae} \left( \partial_b \Gamma^e_{cd} + \frac{2}{3} \Gamma^e_{bf} \Gamma^f_{cd} \right) \right)$$

- Any solution of Einstein gravity is a solution of TMG
- Thermodynamics for rotating BTZ black holes [Krause, Larsen, hep-th/0508218]

$$M(\mu) = M + \frac{J}{\mu}, \quad J(\mu) = J + \frac{M}{\mu}$$

- The angular direction and the decompactification limit
- The dual field theory for TMG on rotating BTZ is a CFT with  $\beta_{\pm}=\beta(1\mp\ell\Omega)$

and 
$$(c_L, c_R) = \frac{3\ell}{2G} \left( 1 - \frac{1}{\mu}, 1 + \frac{1}{\mu} \right)$$

- $_*$  When  $_{\mu\ell < 1}$ : negative central charge; Black hole instability [Park, hep-th/0608165]
- $\mu\ell=1$  [Li, Song, Strominger, 0801.4566]

#### Chaos in TMG from OTOC

Profile for shock wave and OTOC ( $\mu \neq 1$ )

$$h(\phi) = c_1 e^{-\frac{2\pi\phi}{\beta(1+\Omega)}} + c_2 e^{\frac{2\pi\phi}{\beta(1-\Omega)}} + c_3 e^{\frac{2\pi(\Omega-\mu)\phi}{\beta(1-\Omega^2)}}$$
$$OTOC(t,\varphi) = 1 - \varepsilon e^{\frac{2\pi}{\beta}t} h(\Omega t - \varphi)$$

Naively, we have three Lyapunov exponents (non-maximal chaos?)

$$\lambda_{\pm} = \frac{2\pi}{\beta(1 \mp \Omega)}, \quad \lambda_m = \frac{2\pi(1 - \mu\Omega)}{\beta(1 - \Omega^2)} \qquad v_{\pm} = \pm 1, \quad v_m = \frac{1 - \mu\Omega}{\Omega - \mu}$$

Periodicity in  $\phi:h(\phi)\to h(\phi \bmod 2\pi)$  there is a constraint equation among  $c_i$ 

$$h(\phi) = \frac{1+\mu}{1-e^{-\frac{4\pi^2}{\beta(1+\Omega)}}} e^{-\frac{2\pi\phi}{\beta(1+\Omega)}} - \frac{1-\mu}{e^{\frac{4\pi^2}{\beta(1-\Omega)}}-1} e^{\frac{2\pi\phi}{\beta(1-\Omega)}} - \frac{2}{1-e^{\frac{4\pi^2(\Omega-\mu)}{\beta(1-\Omega^2)}}} e^{\frac{2\pi(\Omega-\mu)\phi}{\beta(1-\Omega^2)}}$$

There is one independent "instantaneous Lyapunov exponent"

$$\lambda_{\text{inst.}}(t) = \frac{2\pi}{\beta} + \frac{\partial_t h(\Omega t)}{h(\Omega t)}$$

#### High T limit of instantaneous Lyapunov exponents

#### $\triangleright$ When $\mu>1$

$$\lambda_{\text{inst.}} = \begin{cases} \lambda_{-}, & \text{if } t \in \left[0, \frac{\pi(1+\Omega)}{\Omega}\right) \\ \lambda_{+}, & \text{if } t \in \left[\frac{\pi(1+\Omega)}{\Omega}, \frac{2\pi}{\Omega}\right) \end{cases}$$

$$\langle \lambda_{\rm inst.} \rangle = \frac{2\pi}{\beta}$$

#### $\triangleright$ When $\mu < 1$

$$\Omega < \mu \qquad \qquad \lambda_{\text{inst.}} = \begin{cases} \lambda_m \,, & \text{if } t \in \left[0, \, \frac{2\pi(1+\Omega)}{\Omega(1+\mu)}\right) \\ \lambda_+ \,, & \text{if } t \in \left[\frac{2\pi(1+\Omega)}{\Omega(1+\mu)}, \, \frac{2\pi}{\Omega}\right) \end{cases} \qquad \langle \lambda_{\text{inst.}} \rangle = \frac{2\pi}{\beta}$$

$$\mu < \Omega \qquad \qquad \lambda_{\text{inst.}} = \begin{cases} \lambda_{-}, & \text{if } t \in \left[0, \frac{2\pi(\Omega - \mu)}{\Omega(1 - \mu)}\right) \\ \lambda_{m}, & \text{if } t \in \left[\frac{2\pi(\Omega - \mu)}{\Omega(1 - \mu)}, \frac{2\pi}{\Omega}\right) \end{cases} \qquad \langle \lambda_{\text{inst.}} \rangle = \frac{2\pi}{\beta}$$

#### Lyapunov exponent and butterfly velocities from OTOC

- In the high temperature limit and  $|\Omega t \varphi| \ll 1$ 
  - $\triangleright$  When  $\mu > 1$

$$g(t,\varphi) = 1 - \varepsilon_{VW} \begin{cases} (\mu - 1) e^{\lambda_{+}(t - \varphi)}, & \text{if } \Omega t < \varphi \\ (1 + \mu) e^{\lambda_{-}(t + \varphi)}, & \text{if } \Omega t \ge \varphi \end{cases}$$

When  $\mu < 1$ 

$$\Omega < \mu \qquad g(t,\varphi) = 1 - \varepsilon_{VW} \begin{cases} -(1-\mu) \; e^{\lambda_+(t-\varphi)} \;, & \text{if } \; \Omega t < \varphi \\ -2 \; e^{\lambda_m \left(t - \frac{\varphi}{v_m}\right)}, & \text{if } \; \Omega t \geq \varphi \end{cases} \quad \text{violate the speed bound; $\mathsf{Vm}$>C}$$

$$\mu < \Omega \qquad g(t, \varphi) = 1 - \varepsilon_{VW} \begin{cases} 2 e^{\lambda_m \left( t - \frac{\varphi}{v_m} \right)}, & \text{if } \Omega t < \varphi \\ (1 + \mu) e^{\lambda_- (t + \varphi)}, & \text{if } \Omega t \ge \varphi \end{cases}$$

The dual system is a non-maximally chaotic system

#### Chaos in TMG from OTOC

When  $\mu=1$ , the profile of the shock wave is

$$h(\phi) = \frac{\#}{4r_{+}} \left[ \left( \frac{1 + 2r_{+}\phi}{1 - e^{-\frac{4\pi^{2}}{\beta(1+\Omega)}}} + \frac{4\pi r_{+}e^{\frac{4\pi^{2}}{\beta(1+\Omega)}}}{(e^{\frac{4\pi^{2}}{\beta(1+\Omega)}} - 1)^{2}} \right) e^{\frac{-2\pi\phi}{\beta(1+\Omega)}} + \frac{1}{r_{+}} \frac{1}{e^{\frac{2\pi\phi}{\beta(1-\Omega)}} - 1} e^{\frac{2\pi\phi}{\beta(1-\Omega)}} \right]$$

OTOC 
$$g(t,\varphi) = 1 - \varepsilon_{VW} \begin{cases} \frac{\#}{4r_{+}^{2}} e^{\lambda_{+}(t-\varphi)}, & \text{if } \Omega t < \varphi \\ \frac{\#}{4r_{+}} e^{\lambda_{-}(t+\varphi)}, & \text{if } \Omega t > \varphi \end{cases}$$

#### Chaos in TMG from OTOC

• When  $\mu = 1$  , the profile of the shock wave is

$$h(\phi) = \frac{\#}{4r_{+}} \left[ \left( \frac{1 + 2r_{+}\phi}{1 - e^{-\frac{4\pi^{2}}{\beta(1+\Omega)}}} + \frac{4\pi r_{+}e^{\frac{4\pi^{2}}{\beta(1+\Omega)}}}{(e^{\frac{4\pi^{2}}{\beta(1+\Omega)}} - 1)^{2}} \right) e^{\frac{-2\pi\phi}{\beta(1+\Omega)}} + \frac{1}{r_{+}} \frac{1}{e^{\frac{2\pi\phi}{\beta(1-\Omega)}} - 1} e^{\frac{2\pi\phi}{\beta(1-\Omega)}} \right]$$

OTOC

$$g(t,\varphi) = 1 - \varepsilon_{VW} \begin{cases} \frac{\#}{4r_{+}^{2}} e^{\lambda_{+}(t-\varphi)}, & \text{if } \Omega t < \varphi \\ \frac{\#}{4r_{+}} e^{\lambda_{-}(t+\varphi)}, & \text{if } \Omega t > \varphi \end{cases}$$

- The system duals to rotating BTZ black hole in TMG is nonmaximally chaotic
- MSS chaos bound is always saturated
- If we impose the velocity bound on the butterfly velocity, only  $\mu>1$  is allowed

#### Pole skipping from holography

Pole skipping from near horizon EOM

$$e_{vv}^{(0)}h_{vv}^{(0)} + e_{vr}^{(0)}h_{vr}^{(0)} + e_{v\phi}^{(0)}h_{v\phi}^{(0)} + e_{r\phi}^{(0)}h_{r\phi}^{(0)} + e_{\phi\phi}^{(0)}h_{\phi\phi}^{(0)} + e_{vv}^{(1)}h_{vv}^{(1)} + e_{v\phi}^{(1)}h_{v\phi}^{(1)} = 0$$

$$\left(\frac{2\pi i}{\beta(1\mp\Omega)}, \mp \frac{2\pi i}{\beta(1\mp\Omega)}\right) \& \left(\frac{2\pi i(1-\Omega\mu)}{\beta(1-\Omega^2)}, \frac{2i\pi(\Omega-\mu)}{\beta(1-\Omega^2)}\right)$$

#### Pole skipping from holography

Pole skipping from near horizon EOM

$$e_{vv}^{(0)}h_{vv}^{(0)} + e_{vr}^{(0)}h_{vr}^{(0)} + e_{v\phi}^{(0)}h_{v\phi}^{(0)} + e_{r\phi}^{(0)}h_{r\phi}^{(0)} + e_{\phi\phi}^{(0)}h_{\phi\phi}^{(0)} + e_{vv}^{(1)}h_{vv}^{(1)} + e_{v\phi}^{(1)}h_{v\phi}^{(1)} = 0$$

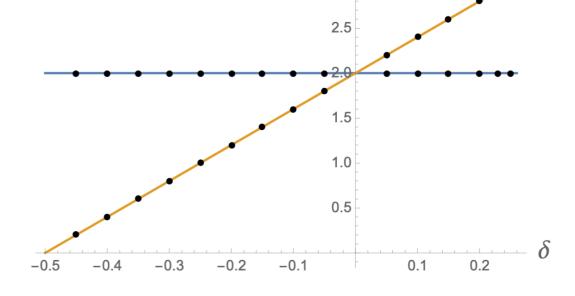
$$\left(\frac{2\pi i}{\beta(1\mp\Omega)}\,,\quad\mp\frac{2\pi i}{\beta(1\mp\Omega)}\right)\quad\&\quad\left(\frac{2\pi i(1-\Omega\mu)}{\beta(1-\Omega^2)}\,,\quad\frac{2i\pi(\Omega-\mu)}{\beta(1-\Omega^2)}\right)$$

Pole skipping from holographic massive mode

$$h_{ij}(\rho) = e^{-i\omega T + ikX} \left[ h_{ij}^{(0)} + \rho h_{ij}^{(1)} + \rho^2 h_{ij}^{(2)} + \rho^{-\delta} \left( b_{ij}^{(0)} + \rho b_{ij}^{(1)} + \rho^2 b_{ij}^{(2)} + \cdots \right) + \rho^{\delta+1} \left( c_{ij}^{(0)} + \rho c_{ij}^{(1)} + \rho^2 c_{ij}^{(2)} + \cdots \right) \right]$$

$$+ \rho^{\delta+1} \left( c_{ij}^{(0)} + \rho c_{ij}^{(1)} + \rho^2 c_{ij}^{(2)} + \cdots \right)$$

$$+ \rho^{\delta+1} \left( c_{ij}^{(0)} + \rho c_{ij}^{(1)} + \rho^2 c_{ij}^{(2)} + \cdots \right)$$


$$+ \rho^{\delta+1} \left( c_{ij}^{(0)} + \rho c_{ij}^{(1)} + \rho^2 c_{ij}^{(2)} + \cdots \right)$$

$$+ \rho^{\delta+1} \left( c_{ij}^{(0)} + \rho c_{ij}^{(1)} + \rho^2 c_{ij}^{(2)} + \cdots \right)$$

$$+ \rho^{\delta+1} \left( c_{ij}^{(0)} + \rho c_{ij}^{(1)} + \rho^2 c_{ij}^{(2)} + \cdots \right)$$

$$\mu = 2\delta + 1$$

$$G_R^{t^{00}t^{00}}(\omega,k) \propto rac{c_{tt}^{(0)}}{b_{tt}^{(0)}} egin{array}{c} \operatorname{Im}\omega = -\operatorname{Im}k + 4(1+\delta) \ & & & & & & & & & & \\ Im\omega = \operatorname{Im}k - 4\delta & & & & & & & & & & & & \end{array}$$



### Pole skipping from CFT

- The massive graviton is dual to an operator with conformal dimension  $(2 + \delta, \delta)$
- The retarded Green's function

$$G_R(\omega, k) \propto \sin \left[ \delta + \frac{i\beta_R}{2\pi} \left( \frac{\omega - k}{2} \right) \right] \sin \left[ 2 + \delta + \frac{i\beta_L}{2\pi} \left( \frac{\omega + k}{2} \right) \right] \times \left| \Gamma \left( \delta + \frac{i\beta_R}{2\pi} \left( \frac{\omega - k}{2} \right) \right) \right|^2 \left| \Gamma \left( 2 + \delta + \frac{i\beta_L}{2\pi} \left( \frac{\omega + k}{2} \right) \right) \right|^2$$

Pole-skipping point

$$(\omega, k) = \left(\frac{2\pi i(1 - \Omega\mu)}{\beta(1 - \Omega^2)}, \frac{2i\pi(\Omega - \mu)}{\beta(1 - \Omega^2)}\right)$$

#### Conclusion

- OTOC and pole-skipping (from near horizon dynamics, holographic correlators, CFT calculations) are two features of quantum chaos
- For rotating BTZ in 3D Einstein gravity, we find a match between the two methods in the high temperature limit
- For rotating BTZ in 3D TMG, we only find a "partial" match between these two methods in the high temperature limit
- For non maximally chaotic system, OTOC and pole-skipping seems to be two independent approaches

#### Conclusion

- OTOC and pole-skipping (from near horizon dynamics, holographic correlators, CFT calculations) are two features of quantum chaos
- For rotating BTZ in 3D Einstein gravity, we find a match between the two methods in the high temperature limit
- For rotating BTZ in 3D TMG, we only find a "partial" match between these two methods in the high temperature limit
- For non maximally chaotic system, OTOC and pole-skipping seems to be two independent approaches
- \* It would be interesting to study other non-maximal chaotic systems (from CFT or holography) [Choi et al. 2010.08558]

### Recent developments...

- pole-skipping is a generic phenomenon, for lots of correlators
- "Pole collision" can be used to define the equilibrium time scale, equilibrium length scale
- Hydrodynamical origin of chaos? Generic features of maximally chaotic systems? Perspectives of hydro EFT of chaos
- Non-maximally chaotic systems

• - -

## Thank you!